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Abstract: The great biological diversity prevailing on
the planet earth is the result of speciation taking place
since life originated over 3.5 billion years ago. Speciation
is the result of natural selection acting on heritable
variations. The common definition of species, generally
practiced by taxonomists, is a group of individuals that
is morphologically distinct from other groups. The
literature on speciation is extensive and most of the
reviews cover one or another aspect of speciation rather
than the entire field. In this review, an attempt is made
to provide an overview on speciation, particularly the
definitions, requirements, various modes and pathways
including an outlook proposed on the rate of speciation
in the coming decades due to ongoing human-induced
environmental and biological changes, keeping in view
the non-specialists.
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Introduction
The planet Earth holds an enormous biological
diversity made up of plants, animals, and other
eukaryotes and prokaryotes. Until Darwin
proposed his theory of evolution, all life forms
present on the planet were believed to be created
by God and they were thought to be immutable
over the course of time. Following the publication
of Darwin’s theory of evolution (Darwin, 1859),
the creationist concept was gradually replaced by
an evolutionary concept which explained the origin
of new species as a result of natural selection acting
on heritable variations. Over the years, evolution

has become one of the most important concepts in
biology. According to the noted geneticist,
Theodosius Dobzhansky (1937) ‘Nothing in
biology makes sense except in the light of
evolution’. The static species concept of Linnaeus
has now been replaced by a dynamic species
concept and the population has become the unit of
speciation (see Stebbins, 1950; Hey et al., 2005;
Lexer & Widmer, 2008). Thus, the biological
diversity currently prevailing on Earth is the result
of evolutionary processes operating since life
originated over 3.5 billion years ago (Lazcano &
Miller, 1996; Patel et al., 2015). The best working
estimate of the number of eukaryotic species present
on the planet ranges from 8.7 million to 12 million,
of which only about 1.2 million have so far been
scientifically documented (see Mora et al., 2011;
Raven, 2020). Rapid diversification of angiosperms
has been the subject of continuous debate for more
than 100 years (see Crane et al., 2000; Crepet &
Niklas, 2009; Magallón & Castillo, 2009; Smith et
al., 2011; Bao et al., 2019). Based on fossil evidence,
the origin of angiosperms was traditionally
considered to be in the Cretaceous period ranging
from 110 to 135 million years ago. However, in recent
years, based on molecular data, the origin of
angiosperms has been pushed back to the late Triassic
period about 210 million years ago (see Coiro et al.,
2019, Li et al., 2019, Janssens et al., 2020, van der Kooi
& Ollerton, 2020).

There is no definition of species that is universally
accepted or valid under all circumstances (Mayr,
1942; Simpson, 1951; Queiroz, 2007). The
morphological species concept, practiced by most
taxonomists, defines species as a group of individuals
that is morphologically distinct from other groups.
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According to the biological species concept (Mayr,
1942) a species is made up of ‘groups of naturally
or potentially interbreeding individuals which are
reproductively isolated from other such groups’.
Thus, morphological dissimilarity and reproductive
isolation are the two major criteria for
distinguishing species. The biological species
concept, however, is difficult to apply as a routine
concept since there are practical difficulties to
investigate reproductive isolation of a potential new
species with related species. Further, reproductive
isolation is not absolute in many of the plant species;
some hybrids do form between well-defined related
species, although most of them may not establish
as new species. Also, a number of molecular studies
have shown gene flow is quite common between
populations and species. In fact, as discussed later,
speciation through hybridization is considered as
one of the major pathways as far as plants are
concerned. Thus, the biological species concept has
limitations for routine use in plants, although it is
prevalent in animals (Grant, 1981). Generally,
taxonomists who erect new species continue to use
a morphological definition of species.

There are two other species concepts that are not
very prevalent in the literature. According to the
phylogenetic species concept ‘the smallest
diagnosable cluster of individual organisms within
which there is a parental pattern of ancestry and
descent’ (Eldredge & Cracraft, 1980) is considered
a species. It tries to define species by their
relationships to other species based on their
genealogical relationships. A group of individuals
that includes all the descendants of one common
ancestor is referred to as a monophyletic group.
According to Wiley’s (1978) evolutionary species
concept, a species is a lineage of interbreeding
organisms, reproductively isolated from other
lineages, that has a beginning (i.e., speciation
through reproductive isolation from the parent
population), an end (i.e., either with extinction or
with its branching into one or more descendants),
and a distinct evolutionary trajectory.

Speciation is a prolonged and complex process and
can take hundreds or thousands of generations.

Unlike many other biological events, most of the
evidence related to speciation is indirect and cannot
be easily replicated or demonstrated. A general
understanding of speciation is largely based on field
observations and analysis. Speciation has been
discussed extensively since the 1930s by a number
of investigators and a vast literature has accumulated
on the subject (e.g., Dobzhansky, 1937; Mayr, 1942;
Stebbins, 1950; Grant, 1981; Fenster et al., 2004;
Hey et al., 2005; Rundle & Nosil, 2005; Rieseberg
& Willis, 2007; Abbott et al., 2008; Cozzolino &
Scopece, 2008; Lexer & Widmer, 2008; Kay &
Sargent, 2009; Soltis & Soltis, 2009; Ferrer & Good,
2012; Yuan et al., 2013; Levin, 2019). Most of the
reviews are confined to comprehensive discussion
covering one specific aspect of speciation, such as
modes of speciation (Butlin et al., 2008), pollinator-
driven speciation (Hoballah et al., 2007; Kay &
Sargent 2009; Xu et al., 2012a,b; van der Niet et al.,
2014), reproductive isolation in general (Lexer &
Widmer, 2008) or in relation to floral specialization
(Ambruster & Muchhala, 2009), ecological
adaptation (Rundle & Nosil, 2005; Sobel et al., 2010),
polyploidy (Wood et al., 2009; Laport & Ng, 2017;
Pelé et al., 2018), hybridization (Ferguson & Sang,
2001; Gross & Riesenberg, 2005; Mallet, 2007;
Rieseberg & Willis, 2007; Soltis & Soltis, 2009; Alix
et al., 2017) and also speciation in the coming
decades due to ongoing human-induced
environmental changes (see Thomas, 2015; Levin,
2019). Hardly any review covers the whole concept
of speciation. Although speciation is basic to all
branches of biology, not all botanists, particularly
in structural and functional disciplines, are familiar
with basic concepts of speciation. An attempt is
made here to give an overview of speciation in
angiosperms, the most successful and highly diverse
group amongst land plants without going too deep
into all the complexities. This overview is essentially
aimed to non-specialists and the references cited
provide links to more comprehensive accounts on
different aspects of speciation. Some terminologies
associated with speciation are explained in
Appendix 1.
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Major requirements for speciation
Heritable variations, natural selection and
reproductive isolation are the basic requirements
for speciation. Presence of heritable variations is the
primary requirement (Hoffman & Merilä, 1999).
Mutations are the source of heritable variations and
thus are the raw materials for speciation.
Recombination during meiosis brings about
additional variations by reshuffling of the mutated
genes. Chromosomal and epigenetic changes,
particularly under ecological stresses, also induce
variations (Tsaftaris & Polidoros, 2000).

Natural selection acts on heritable variation and is
the main operating force for speciation. Natural
selection operates on mutations in three ways: if
the mutation improves the fitness of the individuals
under the prevailing environment, such mutants
produce more progeny when compared to those
without the mutated allele and gradually the
individuals of the original population would get
replaced with the mutants. If the mutation affects
the fitness negatively, such individuals are less
efficient in producing the progeny and they
eventually get eliminated. If the mutation has no
immediate effect on the fitness of the progeny, they
are retained in the population until they affect the
fitness positively or negatively. The action of natural
selection is stronger when there is a change in the

habitat; this generally happens when the individuals
get dispersed to a new habitat (Rundle & Nosil,
2005; Sobel et al., 2010).

Reproductive isolation primarily depends on some
mechanism that prevents gene flow (movement of
genes through space) between individuals within a
population or between populations. As far as
flowering plants are concerned, gene flow is
brought about by dispersal of pollen, seeds and
vegetative propagules. Reproductive isolation
through the prevention of pollen-mediated gene
flow is the most important mechanism for the
initiation of speciation (Rieseberg & Willis, 2007).
Pollination is the basis of pollen-mediated gene flow
involving sexual reproduction. Details of
reproductive isolation that operate between
populations/species at different stages of sexual
reproduction are presented in Table 1.

Modes of speciation
Allopatric speciation: Evolution of new species
in geographically isolated populations as a result of
intervention of some physical barrier, such as a
rising mountain range or an expanding desert or
river that prevents the movement of pollinators
between the two populations. Allopatric speciation
may also result without the development of new
geographic barriers when individuals of a species

Table 1. Various steps in sexual reproduction at which reproductive isolation between populations/
species operate*.

Pre-pollination barriers
Spatial or temporal isolation: The populations/species flower at different times or separated by geographical barriers/
distance so that the pollinators do not carry pollen across the barrier/distance.
Change in pollinators’ preferences as a result of changes in floral traits.

Post-pollination but pre-fertilization barriers
Pollen grains that land on the stigma are inhibited from germination or pollen tubes from germinated pollen are
inhibited in the pistil before reaching the ovule.

Post-fertilization barriers
Degeneration of hybrid embryo at different stages of development. Even when hybrid embryos are formed, they may
not germinate or hybrid plants may not flower or they may be sterile or the few hybrids formed are eliminated because
of their poor fitness.

* Reproductive isolation due to pre-pollination barriers is the initial requirement; it is reinforced over time by pre- and
post-fertilization barriers as a result of additional mutations, recombination, chromosomal and epigenetic changes.
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colonize a remote area and thus its descendants
become geographically isolated from the beginning
because of the distance. Physical isolation prevents
gene flow between the parental and isolated
populations as the pollinators do not move across
the barrier or distance. Thus, geographically isolated
populations behave as local breeding units; any
genotypic or phenotypic changes in them would
not enter the original population.

Reproductive isolation initiated through pre-
pollination barriers are gradually reinforced
through the development of pre- and post-
fertilization barriers over a period of time and the
isolated population eventually evolves into a new
species. Even if the two species subsequently come
into secondary contact, they do not form fertile
offspring due to genetic incompatibilities, or do not
hybridize at all due to the prevalence of pre- and
post-fertilization barriers (see Rundle & Nosil,
2005). Allopatric speciation is faster when isolated
populations occupy different environments.
Ecological differences may operate in the form of
climate, niches, available resources or the presence
of predators and competitors (Schluter, 2000). Thus,
the newly established populations are subjected to
stronger selective pressures and undergo genotypic
and phenotypic divergence faster as they adapt to
different environmental conditions. Allopatric
speciation is considered to be the more common
method of speciation when compared to sympatric
speciation (Butlin et al., 2008).

Sympatric speciation: This refers to the evolution
of a new species within a population through the
emergence of reproductive isolation between
individuals of the original population. There are
two major modes of sympatric speciation –
pollinator-driven speciation and through
polyploidization (see below).

Two other modes of speciation, peripatric
(involving divergence of smaller peripheral
populations) and parapatric (involving adjoining
populations) are included in many books and earlier
reviews (Coyne & Orr, 2004; Lawson et al.,
2015). These are now considered as a continuum

between sympatric and allopatric speciation (Butlin
et al., 2008).

Pollinator-driven speciation
There is a general agreement amongst evolutionary
biologists that insect pollination was the cause of
rapid diversification of angiosperms recorded in the
Cretaceous period (Magallón & Castillo, 2009;
Smith et al., 2011; Bao et al., 2019). Many floral traits
such as flower size and shape, their colour, display,
and the quality and quantity of the rewards act as
attractants for pollinators. A change in any of these
critical floral traits of one or a few individuals within
a population may attract a new pollinator instead
of the original pollinator thus initiate reproductive
isolation. Until recently some evolutionary
biologists even doubted the possibility of pollinator-
driven sympatric mode of speciation. This was
because of the prevalence of the classical view that
adaptive mutations generally have very small
phenotypic effects and they may not be able to
induce reproductive isolation. However, a number
of recent studies have shown that a single major
mutation may initiate adaptive shift in pollinator
preferences (Hoballah et al., 2007; Xu et al., 2012b;
Yuan et al., 2013; Fattorini & Glover, 2020). Thus,
species isolation may be achieved by mutation of
even just one or a modest number of genes.
Pollinator-driven speciation can operate in species
which show some degree of floral specialization in
attracting a single species of pollinator or one
functional group of pollinators such as bees or
humming birds or bats, and not easily in generalized
pollination systems in which diverse groups of
pollinators are effective in transferring pollen (see
Fenster et al., 2004; Armbruster & Muchhala, 2009;
Kay & Sargent, 2009).

Detailed studies in species of Mimulus and Petunia
have provided strong evidences for pollinator-
driven speciation by documenting specific genes
that induce new floral phenotypes leading to a
change in pollinator preference (see Yuan et al.,
2013). Of these, Mimulus is one of the well-
investigated systems (Bradshaw et al., 1995;
Schemske & Bradshaw, 1999; Bradshaw &
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Schemske, 2003). Mimulus has about 120 species
showing great variation in  floral phenotypes,
pollinators and breeding systems. For example,
Mimulus lewisii grows only at moderate and higher
elevations (1600–3000 m), has pink flowers and
small amount of nectar, and bumblebees are the
pollinators. Its sister species, M. cardinalis grows at
lower to high elevations (sea level to 3000 m), has
red flowers and larger amount of nectar, and
humming birds are the pollinators. Although their
ranges overlaps at high and moderate elevations in
the mountains of California, hybrids are
exceedingly rare. The petal colour in these two sister
Mimulus species is determined by carotenoid
pigments controlled by one quantitative locus,
YELLOW UPPER (YUP). The dominant YUP
allele in M. lewisii prevents carotenoid deposition
and the flowers are pink that attracts predominantly
bees (Bradshaw & Schemske, 2003). The recessive
yup allele in M. cardinalis promotes carotenoid
deposition in the petals and the flowers are red. The
red flowers do not attract bees effectively but they
mostly attract humming birds.

An interesting experiment confirmed the role of
petal colour in attracting bees or hummingbirds in
these two Mimulus species (Bradshaw & Schemske,
2003). Near isogenic lines M. cardinalis carrying the
dominant YUP allele from M. lewisii produced pink
flowers. The bees showed strong preference for
pink flowers of M. cardinalis over red flowered wild
type. On the other hand, near isogenic lines of M.
lewisii carrying recessive yup allele from M. cardinalis
produced yellowish-orange flowers; hummingbirds
showed strong preference for these flowers. It was
the colour of the corolla that changed the pollinator
visits and not the shape of the corolla or the amount
of nectar in the isogenic lines. Thus, a single trait
variation in the flower colour, controlled by one
quantitative locus, was enough to initiate a change
in pollinator preference and thus to potentially
initiate reproductive isolation.

Another example comes from Petunia. Petunia
integrifolia has purple scentless flowers with limited
nectar and bees are the pollinators whereas P.

axillaris has white fragrant flowers with
considerable amount of nectar and hawkmoths are
the pollinators (Hopkins & Rausher, 2012). The
colour difference between P. integrifolia and P.
axillaris was shown to be determined by one gene
ANTHOCYANIN2 (AN2) (Quattrocchio et al.,
1999; Hoballah et al., 2007) that is involved in
anthocyanin biosynthesis. Loss of AN2 function
results in white flowers, as is the case in the wild
type P. axillaries. Transformation of the functional
P. integrifolia AN2 allele into P. axillaris background
resulted in purple flowers; all other floral characters
remained that of the original P. axillaris (Hoballah
et al., 2007). Interestingly, bumblebees showed a
preference for the transformed purple flowers of P.
axillaris while hawkmoths continued to show a
preference to wild type white flowers over purple
flowers. Thus one mutation changing the colour
of the petal of P. axillaris shifted pollinator
preference of moths to bees. Subsequent mutations
of other traits such as the amount of nectar and scent
could stabilized pollinator preferences.

The examples of Mimulus and Petunia described
above show pollinator discrimination of the flowers
based on visual traits that are controlled by a single
gene in each species. There are several other
examples of single gene controlled floral traits
(Hopkins & Rausher, 2012; Clegg & Durbin, 2000;
Byers et al., 2014) indicating the role of even a single
mutations in initiating reproductive isolation
through a change in pollinator preferences in
sympatric populations.

Highly specialized species-specific pollination
systems: In a number of species the pollination
system is highly specialized in which each plant
species is pollinated by just one specific animal
species. Although there are quite a few cases of
highly specialized pollination systems reported (see
Johnson & Steiner, 2000; Pellmyr, 2002; Galliot et
al., 2006; Willmer, 2011; Shivanna, 2014; Kato &
Kawakita, 2017), only two such systems, nursery
pollination (figs and fig-wasps) and sexual
deception (orchids), are described here in relation
to speciation.
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Nursery pollination in figs: There are about 850
species of Ficus and based on our present
knowledge, each species of Ficus is considered to
be pollinated by a species–specific female fig-wasp
species (Wiebes, 1979; Pellmyr, 2002; Weiblen,
2004; Willmer, 2011). Floral scent is a key factor
in attracting these species-specific pollinators. The
composition of floral scent of each Ficus species
reflects species boundaries (Chen et al., 2009; Proffit
et al., 2008; Wang et al., 2013). For example, Ficus
semicordata is pollinated by the fig-wasp, Ceratosolen
gravelyi. One benzenoid compound, 4-
methylanisole, is the predominant component (94–
98%) among the volatile compounds emitted by
the receptive fig inflorescences (when they are at
the female phase). This compound is entirely absent
in the volatiles emitted by fig, four days after
pollination, when they no longer attract pollinators.
This compound is also absent in the volatiles
emitted by two other sympatric fig species, Ficus
racemosa and Ficus hispida, both of which are
pollinated by other fig-wasp species. Even in
laboratory experiments, 4-methylanisole attracts the
species-specific pollinator, C. gravelyi. Chemical
blends of volatiles lacking this compound do not
attract this pollinator. Volatile compounds emitted
by receptive figs of the two other sympatric fig
species (Ficus racemosa and Ficus hispida) also do
not attract the pollinator of F. semicordata
(Whitehead & Peakall, 2009).

Sexual deception in orchids: A large number of orchids
achieve pollination by sexual deception/mimicry.
Their flowers do not offer any rewards but mimic
virgin females of the pollinator and also emit a
fragrance similar to sex pheromones of virgin
females of the pollinator. The male visitor is
attracted to the flowers based on olfactory and visual
cues, and lands on the flowers. It tries to copulate
(termed pseudo-copulation) and brings about
pollination during this process by transferring
pollinia gathered by previous visits to other flowers
(Ayasse et al., 2003; Schiestl et al., 2003; Galizia et
al., 2005; Renner, 2006; Xu et al., 2011). Species of
Ophrys are well-studied examples on sexual
deception. Although several Ophrys species grow

sympatrically, each species emits a different
fragrance and is pollinated by different species of
pollinator. For instance three species of Ophrys, O.
lupercalis, O. bilunilata, and O. fabrella, use the same
odour compounds for pollinator attraction, but in
different proportions (Stökl et al., 2009). This
changes the fragrance of each species. Thus, a
change of floral odour brought about by the
amounts of its components can result in the
attraction of a different pollinator in these Ophrys
species.

In some deceptive orchids, it has been
experimentally shown that male pollinators are
attracted even to plastic beads spiked with
pheromone attractants and attempt to copulate with
them (Peakall et al., 2010; Bohman et al., 2014).
Thus, chemical signals alone can mediate attraction
of species-specific pollinators. The shape of the
flower does not seem to be so important in
attracting pollinators; the correct position of the
reproductive structures, however, plays a role in
effective cross-pollination. Evidence collected so
far indicate that changes in floral odour in sexually
deceptive orchids are controlled by few genes with
large phenotypic effects (see Schiestl et al., 2003;
Xu et al., 2012a,b). A mutation that results in a
change in the floral odour is enough to attract a
new pollinator that is not attracted by the parental
species. This prevents pollen flow to the mutant
with changed scent from other individuals of the
population. The progeny from the mutant
gradually evolves into a new species by
reinforcement of other genotypic and phenotypic
changes over time.

In fact speciation in sexually deceptive orchids is
often based on its pollinator; the populations that
do not share the same pollinator have been often
considered as different species, independent of their
morphological or genetic differences (Stökl et al.,
2009; Peakall et al., 2010; Xu et al., 2012a,b).
Reproductive isolation in closely related sexually
deceptive orchids is largely due to pre-pollination
barriers, i.e. differences in pollinator attraction; pre-
and post-fertilization barriers tend to be weak or
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even absent. For example sympatric closely related
species of Ophrys, O. exaltata, O. garganica and O.
sphegodes attract species-specific solitary bees and
do not share their pollinators. However,
interspecific hand pollination results in fertile seeds
but also fertile hybrids (Xu et al., 2011).

Sustenance of specialized pollination systems during
speciation: Plant species with highly specialized
species-specific pollination syndromes have many
advantages (Pellmyr, 2002; Willmer, 2011; Phillips
et al., 2017; Shivanna, 2019). The main advantage
being that it increases pollination efficiency as it
minimizes pollen loss by preventing pollen wastage
to stigmas of other species and also stigma plugging
by heterospecific pollen. However, super-
specialization also carries many disadvantages. The
spread of plant species to new locations is dependent
on the availability of their species-specific
pollinator, which may often be a major limitation.
There is a possibility of pollinators abandoning plant
populations when their density goes down below
a limit. In nursery pollination systems, both the
plant species and their pollinators are dependent
on each other for sexual reproduction also; when
one of the partners becomes scarce or extinct, the
other partner is also prone to eventual extinction.
Because of these disadvantages, several investigators
since the time of Cope (1896) considered super-
specialized pollination systems as ‘evolutionary dead
ends’ prone for extinction (Tripp & Manos, 2008;
Rentsch & Leebens-Mack, 2014).

The prevailing concept on speciation in highly
specialized pollination systems has been that it is
the result of co-evolution of the flower and the
pollinator. Both the plant species and the pollinator
species have undergone simultaneous diversification
through joint co-speciation and adaptive radiation
(Sanderson & Donoghue, 1996; Schluter, 2000;
Good-Avila et al., 2006); when the plant species
splits into two daughter species, its mutualistic
pollinator also splits. Several investigations in recent
years are not entirely in agreement with this
concept of co-speciation of the plant and the
pollinator (Molbo et al., 2003; Cruaud et al., 2011;

Vereecken et al., 2012; Shivanna, 2019). It is difficult
to expect simultaneous co-speciation of the
pollinator that responds to the new odour of the
plant species that has diversified from the parent
species. It may take many generations of new plant
species before its new pollinator evolves and the
new mutualism establishes. How would they
survive until a new pollinator evolves and
establishes?

Highly specialized pollination systems have evolved
several flexible strategies, to survive under pollinator
constraints (see Shivanna, 2019).

i) Opting out of obligate mutualism by recruiting
additional pollinators. A number of studies,
mentioned below, have reported that many super-
specialized pollination systems are capable of
undergoing reversals from specialized to
generalized modes. Cruaud et al. (2011) reported
one wasp species pollinating at least 50 species of
figs and wasp species which are genetically
indistinguishable pollinating different host species
(see also Molbo et al., 2003; Machado et al., 2005).
Similarly in orchids also, there are several reports
of gene flow and hybridization amongst sympatric,
sexually deceptive species (Danesch et al., 1975;
Stökl et al., 2009; Schiestl & Ayasse, 2002; Schiestl
et al., 2003; Cozzolino et al., 2005; Cozzolino &
Scopece, 2008; Gogler et al., 2009).

ii) Evolving an autogamous (self) pollination mode
(Catling, 1990; Bond, 1994; Neiland & Wilcock,
1994, 1995; Johnson & Steiner, 2000; Peter &
Johnson, 2009). This is highly prevalent in orchids;
about 30% of orchid species investigated are
reported to be autogamous (Neiland & Wilcock,
1994, 1995; Claessens & Kleynen, 2002).

iii) Rely on or shift to vegetative propagules (e.g.
Wang et al., 2004). Further, obligate pollination
systems are largely confined to perennials and/or
those with the capacity for vegetative propagation
(Shivanna, 2019). These adaptations enable them
to survive for a number of years/generations until
the evolution of new plant - pollinator and eventual
stabilization of a new obligate pollination systems.
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Polyploidy
Whole genome duplication, i.e. autopolyploidy, is
common in plants, particularly in vascular plants,
when compared to animals, and is an important
driver of diversification (Jones, 1970; Stebbins,
1980;  Bodt et al., 2005; Wood et al., 2009; Levin,
2002, 2019; Ren et al., 2018; Clark & Donoghue,
2017; Landis et al., 2018; Cui et al., 2019; Gao, 2019;
Qiao et al., 2019; Zhang et al., 2019; Lavania, 2020).
The most common pathway of autopolyploid
production in the population is through the fusion
of unreduced gametes; environmental stresses
increase the production of unreduced gametes (see
Levin, 2019). Extensive genome-wide studies on
genomics in recent years have indicated that all
angiosperms have undergone at least one event of
polyploidization in their evolutionary history (e.g.
Levin, 2002; Jiao et al., 2011; Soltis et al., 2014;
Landis et al., 2018; Ren et al., 2018; Qiao et al., 2019).
Although a proportion of duplicated genes are
retained for long periods, often the genome is
reduced in size due to differential loss of genes
(genome downsizing) and the chromosome
numbers are reduced due to their loss or fusion over
time (Leitch & Bennett, 2004; Storme & Mason,
2014). Loss of chromosomes in polyploid lines
indicates that some of the species even with low
chromosome numbers may have derived from
polyploid ancestry (see Wood et al., 2009).
Polyploidization has contributed to the evolution
of novel functions including resistance to diseases
and other stresses (see Panchy et al., 2016 and
references therein). Polyploids, of both auto- and
allopolyploid origins (see below), may disrupt both
genetic and epigenomic processes resulting in
altered DNA methylation patterns, changes in gene
expression and reactivation of transposable elements
(Levin, 2002; Alix et al., 2017; Edger et al., 2017;
Pelé et al., 2018). Several investigations have shown
the role of epigenetic components and transposable
elements in enabling organisms to rapidly produce
new phenotypes and genotypes in response to
stresses (Clegg & Durbin, 2000; Rey et al., 2016).
Polyploidy thus enables new genetic variability

upon which natural selection can operate leading
to speciation. Many investigators consider the
remarkable diversity of angiosperms to be due to
the impact of polyploidy (Tank et al., 2015; Pelé et
al. 2018; Levin, 2019). Polyploids also show more
ecological tolerance and invasiveness when
compared to their diploid progenitors (Levin,
2019). Several cultivated species such as Triticum
aestivum, Avena sativa, Arachis hypogaea, Nicotiana
tabacum, Solanum tuberosum, Coffea arabica and
several species of Musa and Brassica have been
shown to be polyploids (Hilu, 1993; Wickens,
2001).

Autopolyploidy: Spontaneous autopolyploids
(organisms containing more than two complete and
identical sets of chromosomes derived from the
same species) often occur in populations of diploid
species. Polyploids are reproductively isolated in
one step. Pollinations between diploids and
polyploids result in more or less sterile triploids and
do not survive in the population, except where the
main reproductive strategy revolves around
vegetative propagation (e.g. Curcuma; Leong-
Škornicková et al., 2007). Reproductive isolation
between parental diploids and polyploids is largely
confined to post-fertilization barriers. Polyploids
with even chromosome sets (e.g. 4x, 6x, etc.) are
fertile, tend to be more vigorous and withstand
environmental stresses better than parental diploids;
they are likely to increase in the population over
time and may eventually replace the diploid plants
in the populations (Levin, 2019). Despite the strong
and imminent one step reproductive isolation
between parental diploid and polyploid ‘species’,
taxonomists may not be able to recognize recent
autopolyploids as new species because
morphological differences in most of them are too
subtle to describe them as new species.
Morphological differences have to be reinforced in
polyploids through mutations to be able to bring
about clear cut phenotypic changes, which may
take some time, before taxonomists erect them as
new species. This is one of the reasons for the
delayed recognition of species resulting from
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autopolyploidy. Autopolyploidy has given rise to
many wild as well as cultivated species such as potato
and some of its relatives (Grant, 1981) and several
species in Saxifragaceae (Soltis & Rieseberg, 1986;
Wolf et al., 1987; Soltis et al., 1989. Many
autopolyploid ginger varieties with improved
quality have been produced (Smith et al., 2004; Wei
et al., 2011).

Hybridization
Hybridization is another mechanism that drives
speciation in plants (e.g. Mallet, 2007; Soltis & Soltis,
2009). The disruption of physical barriers between
previously isolated congeneric species in which
reproductive isolation is weak or has not yet evolved
fully would allow the formation of hybrids. As
pointed out earlier, reproductive isolation even
between well recognized sister species is not
absolute; some hybrids are produced when the
populations of two closely related species come
together permitting pollen flow between them. But
most of the hybrids may not persist because of
sterility and fitness problems but some of them,
particularly those with vegetative propagation
strategy may persist and evolve into a new species
(Leong-Škornicková et al., 2007).

There are two types of hybrid speciation. One is
homoploid hybrid speciation in which the hybrids
evolve into new species without a change in their
chromosome number. The other is allopolyploid
hybrid speciation which refers to the origin of new
species through duplication of the hybrid genome.

Homoploid hybrid speciation: This mode of
speciation is rarer than the allopolyploidy mode; as
pointed out earlier, hybrids are generally sterile and
also show often reduced fitness, particularly in early
generations (but see Yang et al., 2019). However,
if they colonize new habitats, particularly those that
are not congenial to the parental species, hybrids
are likely to show better fitness and successfully
establish in new habitats (Campbell & Waser, 2007).
Thus, homoploid hybrids are largely reported in
novel habitats that are not occupied by parental
species. Several homoploid hybrids have been

described (Gross & Rieseberg, 2005; Soltis & Soltis,
2009; Yakimowski & Rieseberg, 2014). Only a few
are mentioned here. In Helianthus, H. annuus
occupies soil that is rich in clay while H. petiolarius
colonizes sandy soils. It has been shown, based on
molecular evidences that three species of Helianthus,
each occupying ecological divergent habitats, – H.
anomalus (sand dune), H. deserticola (desert) and H.
paradoxus (salt marsh), – have evolved through
hybridization of H. annuus and H. petiolaris through
homoploid speciation (Rieseberg, 2006; Buerkle &
Rieseberg, 2008). Senecio squalidus derived from S.
aethnensis x S. chrysanthemifolius is another
homoploid hybrid (James & Abbott, 2005). In the
above examples, ecological selection (because of the
increased colonization potential of the hybrids)
seems to have played a major role in homoploid
speciation. Even when the hybrid comes in contact
with the parental species that permits pollen flow,
the hybrid remains as distinct species; it may not
result in the new hybrid progeny because of sterility.

Allopolyploid hybrid speciation: Allopolyploid
hybrids are usually fertile when they have an even
number of genomes, and genome-wide changes
in newly formed allopolyploids induce novel
phenotypic and genotypic variations which are
likely to contribute to the survival and ultimate
success of allopolyploids. Alloploid hybrid
speciation is more common than homoploid hybrid
speciation and there are a number of examples
(Wood et al., 2009; Levin, 2019). Several crops and
ornamental species have been shown to be of
alloploid origin. Some other reports of allopolyploid
species include: Mimulus peregrinus, an allohexaploid
(6x) hybrid species between M. guttatus (2x) and
M. luteus (4x) (Vallejo-Marín, 2012). Similarly,
Nicotiana tabacum is an allotetraploid hybrid species
between N. sylvestris (2x) and N. tomentisiformis (2x)
(Sheen, 1972).

As pointed out earlier, speciation in general is a
slow process and may take hundreds of generations.
However, speciation through polyploids, especially
allopolyploids are exceptions in the sense that new
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recognizable species are formed in one or few steps.
However, natural selection acts on their
sustainability and spread which may take a number
of generations during which they undergo many
genetic and epigenetic changes in relation to natural
selection. Although a large number of hybrid
species are formed due to incomplete reproductive
isolation of parental species, most of them do not
survive and fail to evolve as new species.

Outlook of speciation in the
Anthropocene era
Research and discussions on speciation in flowering
plants would, no doubt, continue to be intense in
the coming years and the emerging technologies
in analytical methods may allow us to study
speciation in greater detail. One of the major
concerns of human-induced environmental
changes including the climate change in recent
decades has been its impact on biodiversity. A
general consensus amongst conservation biologists
has been that as many as one third of species may
become extinct by the end of the century which is
thousands of times more than the background
extinction rate (Barnosky et al., 2011; Ceballos et
al., 2020; IUCN, 2020). According to IUCN
(2020), 27% of all assessed species are threatened
with extinction. Most of the assessed groups,
however, belong to animals. More importantly a
large number of species may not become extinct
but their population densities and geographical
distribution would be reduced to such an extent
that they are unable to make any impact on
community interactions (see Pimm & Raven, 2019;
Ceballos et al., 2020; Raven, 2020). According to
some biologists, plant species seem to be
comparatively resistant to extinction when
compared to animal species (see Vellend et al.,
2017). However, amongst the limited plant groups
assessed by IUCN, 34% of the conifers are reported
to be threatened, which is more than many of the
threatened animal groups. In a recent detailed study,
based on a comprehensive global analysis,
Humphreys et al. (2019) documented extinction of
about 600 plant species since 1900 (excluding

species which were declared extinct but were
subsequently rediscovered); this amounts to a 500
times higher than the background extinction rate
(see also Ledford, 2019). According to their analysis
species on islands and in the tropics particularly
those with narrow distribution ranges are more
susceptible (Humphreys et al., 2019). The general
outlook from the discussions on human-induced
mass extinction is that the biodiversity on the planet
is going to be markedly reduced in the coming
decades.

However, the prevailing biodiversity (both
described and un-described) depends on the
proportion of the number of species that become
extinct to the number of new species formed. In
contrast to the availability of enormous literature
on species extinction, there is very limited
discussion on the impact of climate change on
speciation in the coming decades (Thomas, 2015;
Bull & Maron, 2016; Vellend et al., 2017; Otto,
2018; Levin, 2019). A few authors have observed
and expected an accelerated rate of speciation in
the recent past and coming decades, often referred
to as Anthropocene, due to extensive ongoing
human-induced environmental and biological
changes (Thomas, 2015; Levin, 2019). According
to Thomas (2015) the number of new species that
have arisen in Europe over the past three centuries
are more than the number of species documented
as extinct during the same period; this increase has
been the result of modern agriculture, horticulture
and the human-mediated extensive transport of
species across regions, followed by hybridization.
According to Levin (2019, but see also Gao, 2019)
auto- and allo-polyploidy are going to be the
primary modes of speciation in the next 500 years
and the proportion of polyploid species would
surpass 50% amongst the described species. He
argues that environmental stresses induced due to
climate change are likely to trigger higher rates of
speciation through mutations and other genetic
changes. Equally important, not in relation to
speciation but for the sustenance of human welfare,
is the responses of crop species to the ongoing
climate change (Gornall et al. 2010). Would climate
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change induce higher levels of polyploidy or other
genetic changes in crop species in the coming
decades leading to the evolution/development of
new genotypes/varieties/species so that they are able
to sustain productivity and quality of food grains?
This is going to be important as it affects food and
nutritional security of the increasing population of
the world, particularly in developing countries.
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Appendix1: Some terminologies related to
speciation
Phyletic speciation: One species gradually transforming into

a new species by accumulation of variations. Phyletic
speciation does not increase biological diversity as it does
not increase the number of species.

Divergent speciation/Cladogenesis: One species giving rise to
two or more species and thus results in phylogenetic
branching of the species. All the species resulting from
cladogenesis may exist at a given time or any of them
may become extinct at some point. Cladogenesis
increases the number of species and thus biological
diversity.

Phylogenetic tree: Is a diagram that shows an inferred (from
fossil, and morphological and molecular evidences) path
of evolution and evolutionary relationships between
species. The node in a phylogenetic tree represents the
common ancestor.

Sister species: Sister species are the two species derived from
a common ancestral node. They represent each other’s
closest relatives since they share an ancestral species not
shared by any other species.

Clade: A clade is a monophyletic group of organisms that
includes all descendant species from a common ancestor
(both extinct and extant).

Adaptive radiation: Speciation in which a species diverges
rapidly into many species in comparatively a short time.
This generally happens when a species enters a new
habitat where there is little or no competition or
environmental stress. Speciation through adaptive
radiation is common in volcanic islands. When one or a
few seeds arrive on these islands from the mainland, the
initial population (founding population) is made up of
an extremely small gene pool. The plants are free from
predation by herbivores and of pathogens or from
competition from other plants. The population

multiplies rapidly and builds up the gene pool. When
they spread to neighbouring islands, the populations of
each island adapt to local conditions and evolve into
new species.

Some examples of adaptive radiation: The Hawaiian group of
silverswords consists of twenty eight species under three
genera, Debautia (21 species), Argyroxiphium (5 species),
Wilkesia (2 species), which include trees, shrubs, vines
and cushion plants occupying different habitats. All
available evidences indicate that all species of this group
are the descendants from one species that arrived on
Hawaiian islands millions of years ago (Baldwin &
Sanderson, 1998). Another remarkable example of
adaptive radiation is the species of Drosophila on
Hawaiian Islands (Zimmerman, 1970; Ashburner et al.,
1981). Over 500 species of Drosophila are estimated to
be present on these Islands and evidences indicate that
all of them have evolved from one or two original
founder individuals. Fifty six species of honeycreepers
(birds) on Hawaiian Islands, (some of which have
become extinct) (Olsen, 2004) and 14 species of Darwin’s
finches on Galapagos Islands (Petren et al., 2005) are
also well known examples of adaptive radiation.

Genetic drift: Genetic drift is a random process that leads to
large changes in the allelic composition of populations
over a short period of time. Many of the alleles may get
eliminated from the population irrespective of their role
in the fitness of individuals. A few individuals of the
population that survive may start recovering but their
allelic composition would be different from the original
population.

Ecotype: An ecotype is a genetically distinct geographic
variant/population/race of a species which is adapted to
specific environmental conditions. Phenotypic
differences of ecotypes are of minor nature or too subtle
to warrant classifying them into subspecies. Ecotypes
are able to interbreed with other ecotypes without the
loss of fertility or vigour.

Microevolution: Genetic variations in the population leading
to the evolution of new varieties and species through
selection of individuals or random drift.

Macroevolution: Evolution of taxonomic hierarchy above
species levels (families, orders etc.) that evolve over
millions of years.


